
About us

In Chinese, our company name "DELDA" is "德尔达". "德" means "Ethics", which is very important and highly appreciated in business, and that's why it is placed in the first place by us. "达" stands for "Achievement", as we are always seeking a win-win result between our clients and us.

We are diligent and dynamic.

We focus on excellence and loyalty.

We have advantage on cost, quality and package control.

Company Profile

We introduce ourselves as a manufacturer and trader specialized in the research, development and production of a series of carbon materials for steel, foundry and metal casting industries.

Our main office is located in the CBD of Tianjin, where witnesses and promotes economic prosperity and city development and has nourished a better environment for corporate venturing from home and aboard.

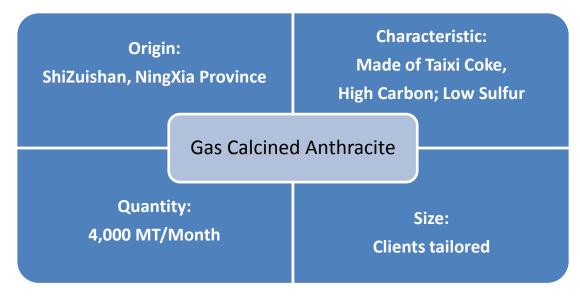
With convenient transportation access, it only takes a five kilometers drive from our warehouse to Tianjin/Xingang Port and we can take orders and solve problems in time.

As a result of our high quality products and outstanding customer service, we have gained a global sales network reaching America, Japan, Europe, Africa and Southeast Asia. All of our products comply with international quality standards and are greatly appreciated in a variety of different markets throughout the world.

Port of Tianjin/Xingang

Tianjin Port is the Core carrier to construct the international shipping center and logistics center in northern China.

And its characteristics are as below:


- The largest comprehensive port in northern China
- Having broad international connection
- One of the coastal ports with the most complete functions in China
- The only port in China which has three Eurasia continental bridge passages

Products

Gas Calcined Anthracite

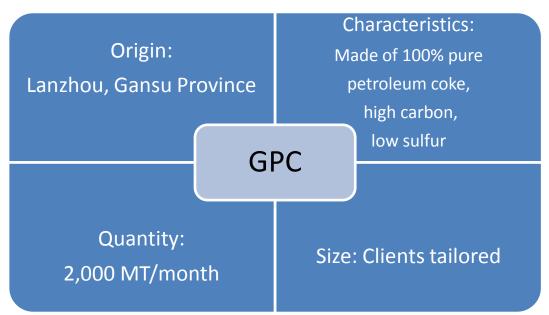
Specifications:

F.C	S	Ash	Volatile	Moisture
90% min	0.5%max	8.0%max	1.5% max	1.0% max
91%min	0.4%max	8.0%max	1.0% max	1.0% max
92%min	0.4%max	7.0%max	1.0% max	1.0% max
93%min	0.3%max	6.0%max	1.0% max	1.0% max
94%min	0.3%max	5.0%max	1.0% max	1.0% max
95% min	0.25% max	4.0%max	1.0% max	1.0% max

Calcinator

At present, our manufacturer in Ningxia Province has owned eight calcinators (vertical shaft furnaces as shown in the left picture), which guarantee our high production capacity well.

Raw material: Taixi Coke


As it is known that raw material plays a vital role in determining the quality of calcined anthracite. Bearing this in mind, our manufacturer adopts "**Taixi Coke**", which has the advantage of low sulfur and low ash, the best coke for anthracite calcination at present in China.

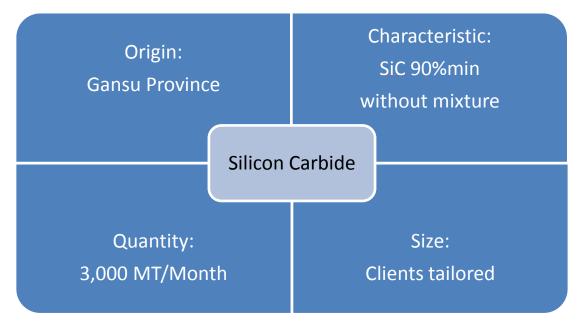
Process Completed products

After completing calcination in the furnace at 1200° C, as it is necessary to make such a high temperature environment for products to be devolatilized and partially graphitized. As shown in the above picture, here gas calcined anthracite is being transferred and its temperature could reach 400-500°C. (For Electrically Calcined Anthracite, the inside calcinatory temperature is set at 1700°C)

Graphitized Petroleum Coke (GPC)

Specifications:

F.C	S	V.M	ASH	MOISTURE
98.5% min	0.05%max	0.06%max	0.6%max	0.5%max


Normally, for Graphitized Petroleum Coke, fixed carbon is at 98.5% min and sulfur is under 0.05%. Specially, we could provide GPC with F.C 99% min and S 0.03% max. And the size is according to clients' requirement.

Raw Material: petroleum coke

For raw material, we adopt 100% petroleum coke without mixing with any other impurities, which enable us to produce GPC with high carbon and low sulfur.

Black Silicon Carbide

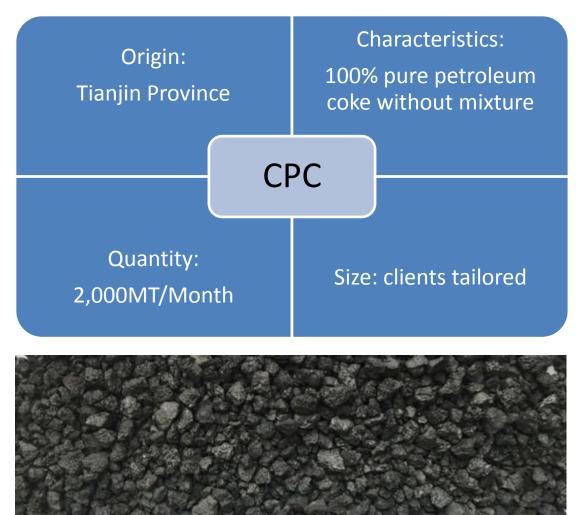
Specifications:

SIC	Sulfure	Fe	Nitrogen	Moisture
90%min	0.05%max	1.0%max	0.2%max	0.5%max

Raw SIC Lump

Production Line

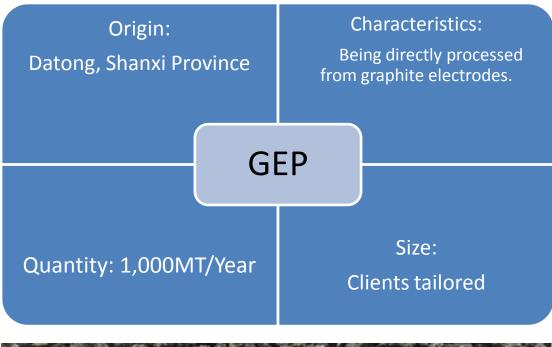
SIC 90%min



SIC 97%min

At present, we supply black silicon carbide 90-97%, and they have undergone s series of official inspections like SGS, JFE... Our high quality and competitive price have enabled our clients to keep winning their domestic markets.

Calcined Petroleum Coke (CPC)

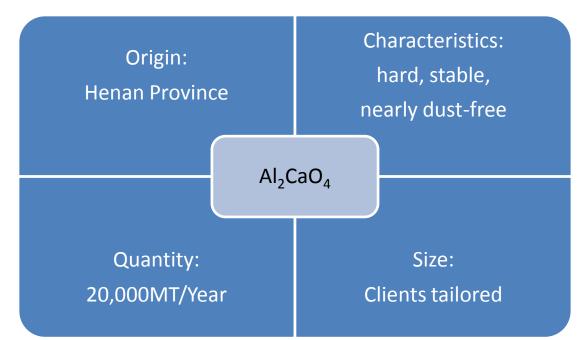


Specifications:

F.C	S	Ash	Volatile	Moisture	Ν
98.5%min	0.1%max				0.65%max
98.5%min	0.5%max	0.5%max	0.5%max	0.7%max	0.7%max
98.5&min	0.7%max	0.7%max	0.8%max	0.5%max	0.7%max

Apart from Calcined Petroleum Coke, by adopting pitch coke as the raw material, we could produce Calcined Pitch Coke as well, and it is with fixed carbon 99% min and sulfur 0.15% max.

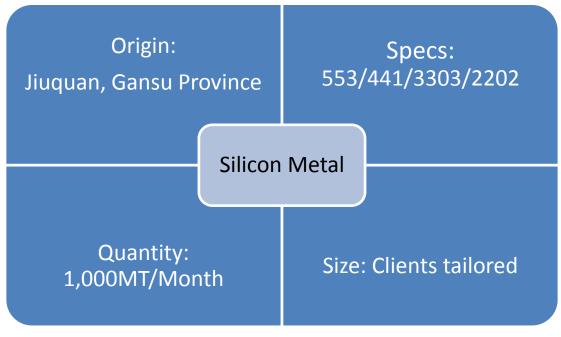
Graphite Electrode Scrap/ Powder/ Granules



Specifications:

	Gra	aphite Elect	rode Scrap	
F.C	S	Ash	Volatile	Moisture
99%min	0.03%max	0.45%max	0.76%max	0.11%max

Calcium Aluminate


Specifications:

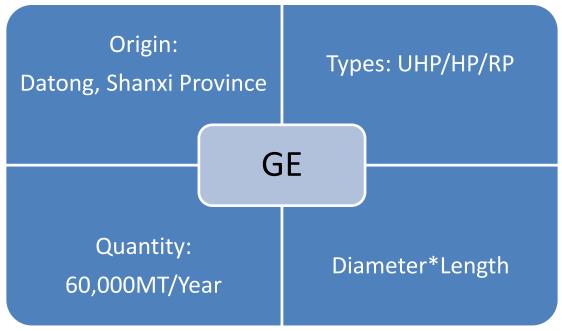
	CaO%	AlO2%	SiO2%max	TiO2%max	MgO%max	Fe2O3%max
TYPE A	46-51	38-43	3.8	2	2	1.8
TYPE B	47-52	41-45	3.8	2	2	1.8
TYPE C	53-57	30-38	3.8	2	2	1.8
TYPE D	25-30	53-55	4	2.5	2	1.8
TYPE E	30-35	55-58	4	2.5	2	1.8
TYPE F	45-50	30-35	3.8	2	5-10	1.8
Melting P	oint					
			1350°C-1	400°C		
Bulk Den	sity					
			2.85-3.0)g/m³		

Calcium Aluminate is a completely pre-melt material manufactured to meet the specific requirement of steel making and metallurgy. And it has the features as below:

- 1. Specifically designed to have the required chemical composition and physical properties that make slag removal easy to handle.
- 2. Calcium Aluminate melts readily at "steel-making" temperatures.
- 3. The best substitute for Calcium Fluoride as it contains no fluorine compounds, thus avoiding refractory attack and atmospheric pollution.
- 4. Preventing the gaseous pick-up from atmosphere and an effective fluid sink that absorbs inclusions from steel.

Silicon Metal

Ferro Silicon



According to the standard GB2277-87, and based on Si and other impurities content, Ferro Silicon is divided into sixteen types as below:

				Spec	ificat	ions		
	Si	Al	Ca	Mn	Cr	Р	S	С
	min	min	min	min	min	min	min	min
Fesi90Al1.5	87.0-	1.5	0.5	0.4	0.2	0.04	0.02	0.2
	95.0							
Fesi90Al3	87.0-	3.0	0.5	0.4	0.2	0.04	0.02	0.2
	95.0							
Fesi75Al10.5-	74.0-	0.5	1.0	0.4	0.3	0.035	0.02	0.1
Α	80.0							
Fesi75Al10.5-	72.0-	0.5	1.0	0.5	0.5	0.04	0.02	0.2
В	80.0							
Fesi75Al1.0-	74.0-	1.0	1.0	0.4	0.3	0.035	0.02	0.1
А	80.0							
Fesi75Al1.0-	72.0-	1.5	1.0	0.5	0.5	0.04	0.02	0.2
В	80.0							
Fesi75Al1.5-	74.0-	1.5	1.0	0.4	0.3	0.035	0.02	0.1
А	80.0							
Fesi75Al1.5-	72.0-	1.5	1.0	0.5	0.5	0.04	0.02	0.2
В	80.0							
Fesi75Al12.0-	74.0-	2.0	1.0	0.4	0.3	0.035	0.02	0.1
А	80.0							
Fesi75Al12.0-	74.0-	2.0	1.0	0.4	0.3	0.04	0.02	0.1
В	80.0							
Fesi75Al12.0-	72.0-	2.0	-	0.5	0.5	0.04	0.02	0.2
С	80.0							
Fesi75-A	74.0-	-	-	0.4	0.3	0.035	0.02	0.1

	80.0							
Fesi75-B	74.0-	-	-	0.4	0.3	0.04	0.02	0.1
	80.0							
Fesi75-C	72.0-	-	-	0.5	0.5	0.04	0.02	0.2
	80.0							
Fesi65	65.0-	-	-	0.6	0.5	0.04	0.02	-
	<72.0							
Fesi45	40.0-	-	-	0.7	0.5	0.04	0.02	-
	47.0							
	Quantit	y Av	ailable	e: 1,0	00 MT	/Month		

Graphite Electrode

			Norminal D	Diameter				
ltem		Unit	UHP		HP		RP	
			≤Φ400	≥ Φ4 50	≤ Φ400	≥Φ450	≤ Φ 300	≥Φ350
Basistanas	E		≤5.5		≤6.5		≤8.5	
Resistance	N	µΩ∙m	≤4.5		≤5. 5		≤8.5	
Baadian Chanadh	E		≥11.0		≥10.5	≥9.8	≥8.5	≥7.0
Bending Strength	N	MPa	≥20.0		≥16.0		≥15.0	
Floorin Madalana	E	GPa	s14.0		≤12.0		≤9.3	
Elastic Modulus	N	GPa	≤18.0		≤16.0		≤14.0	100
Della Deservite	E		≥1.66	≥1.67	≥1.62	1.60	≥1.53	≥1.52
Bulk Density	N	g/cm3	≥1.75		≥1.73		≥1.69	
	E	10.000	≤1.5		\$2.4		≤2.9	-
CTE.	N	10-6/90	s1.4		\$2.2		≤2.8	
Ash		%	≤0.3		≤0.3		≤0.5	

Graphite electrode to allow the current load and current density (recommended)

Norminal Diameter	RP		HP		UHP	
mm	Current load	Current Density A/cm2	Current load	Current Density A/cm2	Current load	Current Density A/cm2
200	5000-8900	15-21	5500-9000	18-25		
250	7000-10000	14-20	8000-13000	18-25	9200-15100	21-30
300	10000-13000	14-18	13000-17400	17-24	13000-22000	20-30
350	13500-18000	14-18	17400-24000	17-24	20000-30000	20-30
400	18000-23500	14-18	21000-32000	16-24	25000-40000	19-30
450	22000-27000	13-17	25000-40000	15-24	32000-45000	19-27
500	25000-32000	13-16	30000-48000	15-24	38000-55000	18-27
550	32000-40000	13-18	37000-57000	15-23	48000-60000	18-24
600	38000-47000	13-18	44000-87000	15-23	52000-72000	18-24
700	45000-54000	13-16	54000-73000	15-23	62000-95000	18-24

Cone size of graphite electrode joints Unit: mm

			Nipple		5-7-1-1-		Socket		
Diamet	er		D	d2	L	1	d1	н	Pitch
			Tolerance	2:		Т	Tolerance:		
	mm	in	(-0.30~ 0)	(-0.30~0)	(-1~0)	Z	(0~0.3)	(<mark>0</mark> ~7)	
	225	9.	139.70	91.22	203.20		141.22	107.60	1
	250	10*	155.57	104.20	220.00		157.09	118.00	1
	300	12*	177.16	117.39	270.90		148.68	141.50	1
	350	14"	215.90	150.48	304.80		217.42	158.40	1
	400	18*	215.90	150.48	304.80		217.42	158.40	
	400	16*	241.30	170.23	338.70		242.82	175.30	1
3TPI	450	18"	241.30	170.23	338.70		242.82	175.30	8.47
	450	18"	273.05	199.17	355.60	7	274.57	183.80	1
	500	20*	273.05	199.17	355.60		274.57	183.80	1
	500	20*	298.45	221.73	372.60		299.97	192.20	1
	550	22*	298.45	221.73	372.60		299.97	192.20	1
	600	24*	338.55	245.73	457.30		338.07	234.60	1
	350	14"	215.90	144.85	338.70		217.42	175.30	1
3TPIL	400	18*	241.30	167.43	355.60		242.82	183.80	1
	450	18"	273.05	182.23	457.30		274.57	234.60	1
	200	8"	122.24	81.48	177.80	+	115.92	94.90	+
	225	9.	139.70	98.94	177.80		133.38	94.90	1
	250	10*	152.40	109.52	190.50		146.08	101.30	1
	300	12*	177.80	130.69	215.90		171.48	114.00	1
	350	14"	203.20	149.74	254.00		196.88	133.00	
	400	18*	222.25	160.32	304.80		215.93	158.40	1
4TPI	450	18*	241.30	179.37	304.80		234.98	158.40	1
	500	20*	269.88	199.49	355.60		263.56	183.80	1
	550	22*	298.45	228.06	355.60		292.13	183.80	1
	600	24"	317.50	247.11	355.60		311.18	183.80	1
	650	28*	355.60	268.27	457.20		349.28	234.60	
	700	28"	374.65	287.32	457.20	7	368.33	234.60	8.35
	300	12"	177.80	124.34	254.00		171.48	133.00	
	350	14"	203.20	141.27	304.80		196.88	158.40	1
	400	18*	222.25	151.86	355.60		215.93	183.80	1
	450	18"	241.30	170.91	355.60		234.98	183.80	1
	500	20"	269.88	182.55	457.20		263.56	234.60	1
4TPIL	550	22"	298.45	211.12	457.20		292.13	234.60	1
	600	24"	317.50	230.17	457.20		311.18	234.60	1
	650	28*	355.64	251.38	558.80		349.28	285.40	1
	700	28*	374.65	270. <mark>39</mark>	558.80		368.33	285.40	1

Package and delivery

Pallets

1. Wood Pallet with Fumigation Mark

2. Non Wood Composite Board

Bags

Bulk bag

Package

The coating, inflated paper bag and the blue ball that the red arrow points to are all used for quakeproof, which help the products be intact.

Quality Assurance

In response to the requirements of the market, our quality assurance has always been built up based on international standards. We could provide SGS report, Inspectorate and other official inspections by the third party. Besides, we have received ISO9001.

	Report Online MINENATIONTJ Inne No 1210412	TER	TING RE	TROO		
Our Parliewines MM0014-00087.J Date August 15, 2014 Report of Analysia Begort of Analysia	Declared Principal Harre Declared Principal Address Declared Banyle Harre Biologie Received Date Disclored Coder Received Biologie Contillate on Received	DELIDA GAREN F Sathor addition 2014-05-11 T	W.Co.170	FURI		
Previoual Declared Manerata SiC DA CAMBON GO JUTE Declared Manerata SiC A Applied 11, 2014	to accordance with restrictions on sample. The onalysis results rep			and and o	arteid out requ	uted last or the solar
THIS IS TO CERTIFY that, we have performed required analysis on the	feet Berry		Synder	-	thesail (- Method Thermont A
above-mentioned submitted samples with analytical results as follows	Fixed Garbon		NT -	.94	05.55	08/1212-2808
Analytical Besults on De Belenitied Benotes,	Total Dullar		54		0.13	GB/1 214-2007
	and a second					
The above reflect our firstings at time and piece of heth for the submitted sample only. It does not help to be qualify of the whole exponent. The weakfade sides not evaluate eliginesis.	Respect 5. The test report smaller is shutter i vector would be invested if a parameter 2. Otherwise approximation of any Resettion. The completion is determined representationness of the parameter representationness of the parameter representationness of the parameters.	 bassagi te GA, e et alexañi ba repart bassañi ba repart fan t'orant a la describe velada 	theory without age and to an without the "The and "" theories rate " if partices. Fay Take " if partices. Fay Take " if	result of the 1 15 days from 	Solgality Re calls of rec	energ the test report.
not refer to the quality of the whole eligement. This certificate does not evidence eligment.	 The fact report small is invalid to respond which is invalid to invalid its offerent spectrum, along the exp dimensional spectrum, along the dimensional spectrum is and the dimensional spectrum is dependent of the expectation of the spectrum is and the spectrum of the spectrum is and the spectrum is an and the spectrum is and the spectrum is an and the spectrum is an and the spectrum is an and the spectrum is an and the spectrum is an an and the spectrum is an and the spectrum is an an	 bassagi te GA, e et alexañi ba repart bassañi ba repart fan t'orant a la describe velada 	discut written spo find to an willing to service role of the seath role of the seath role of the seather file to the seather to the seather t		Sergette Re dals at so ince accient accept at the	every the test report.